Determining the Mediating Effects of Trust on E-Payment Readiness in Ghana: Consumers’ Perspective Analysis

Patrick Acheampong¹, ², Li Zhiwen¹, Henry Asante Antwi¹, Anthony Akai Acheampong Otoo¹, Frank Boateng², Isaac Asare Bediako¹
¹School of Management, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, P.R., China
²Ghana Technology University College, PMB 100, Tesano-Accra, Ghana
Corresponding Author: kdarkwa99@yahoo.com

ABSTRACT

Transitioning from a cash-based economy to digital or cashless economy requires that business entities build a more friendly customer relationship strategy whiles ensuring their security. This study sought to integrate trust and the Technology Readiness Index to determine their respective influence on e-payment adoption. The finds sheds light into how potential factors influencing e-payment adoption and for that matter measures to overcome these challenges. The study indicates that high personal optimism about technology in general leads to high trust of an e-payment technology. Further, high personal innovativeness about technology in general leads to higher trust of an e-payment technology. The findings suggest that low personal discomfort about technology in general leads to lower trust of an e-payment technology. Finally, it is established that low personal insecurity about technology in general leads to lower trust of an e-payment technology.

Keywords: e-Payment, Mediating, Trust, Consumers, Ghana

INTRODUCTION

The internet, one of the profound technologies has seen substantial growth (Xiang et al. 2015). Its growth has influenced all aspects of human life such as communication, governance, learning, travelling, buying and selling etc (Odumeru 2013; Valaei et al. 2016). This innovative technology has given today’s consumers various opportunities and options to choose from especially in the service sector. The financial sector of Ghana was inundated with foreign banks during the colonial era. However, the quest of Ghana to establish her own banks was not far-fetched. Consequently, in 1953 the Ghana Commercial Bank emerged as the first indigenous bank that will compete with the clear intention to weaken the control of the expatriate banks.

Recently, the financial sector has experience proliferation of offshore banks notably from Nigeria. The presence of these banks has undoubtedly heightened the level of competition in the financial sector while also improving the level of efficiency and service delivery. The level of competition in the Ghanaian banking sector is being driven by technological innovations-telephone banking, e-banking, SMS banking etc.

In this era of sophisticated technological innovations, banks offering digital or electronic payment services stand the chance of increasing their customer base (Bask et al. 2011; Jain et al. 2012; Rahman 2012). Ghana’s digital payment systems have seen a remarkable improvement over the years. As defined by Kim et al. (2010), e-payment is the transfer of an electronic value of payment from one party to the other through electronic payment method. It was also captured by (Kumaga 2011; Masamila 2014) as an avenue of settling financial transactions using networked communication channels. It is very imperative to acknowledge that the success, sustainability and growth of e-commerce invariably
It must be noted that with reference to online transactions the processes and principal actors are essentially the same for offline and online purchases as shown in figure 1.1 below. The electronic payment transaction processing takes place among the following major parties:

- **Client** – In the cyberspace clients can be referred to as customers.
- **Merchant**. An entity that sells goods or services.
- **Issuing bank**. The issuer (usually a bank) of the credit (debit) card to people (or businesses).
- **Acquiring bank**. The financial institution offering a special account called an Internet Merchant Account that enables payment authorization and processing.
- **Credit card association**. The financial institution providing card services to banks (e.g., Visa and MasterCard).
- **Payment service provider**. The company that provides electronic connections and transaction services among all the parties involved in electronic payments (including authorizations). A payment service provider is also called a payment gateway provider.

Electronic Payment Stages

In the e-business or e-commerce business circle, an electronic or digital payment has long been envisaged as the decisive litmus test for security and trust. Electronic payment is an important factor as it constitutes any form of commercial transaction. E-payment systems in particular from the real world mimics existing payment platforms while considering contemporary methods of executing payments. All major forms of electronic payment methods solely depend on trust, security and reliability pertaining to that system.

Characteristics of e-payment Systems

Electronic payments offer enormous benefits which include but not limited to the following:

- **Independence**. Most forms of e-payment require the merchant to install specialized software and hardware to authorize and process a payment. Specialized methods may be cumbersome and costly.
ii. **Security.** How safe is the money transfer? What if the money transfer is compromised? Only safe systems will succeed.

iii. **Interoperability and portability.** An e-payment method must be integrated with existing information systems.

iv. **Anonymity.** Some buyers want their identities and purchase records to be anonymous. This can be done only when cash is used. To succeed, special payment methods, such as e-cash, have to maintain anonymity.

v. **Ease of use.** Credit cards are used for B2C and B2B e-payments because of their ease of use. E-payments must complement the trading methods.

Classifications of e-payment Instruments

For all forms of e-commerce access to competitive payment solution is a critical facilitator (UNCTAD, 2015). Unlike bricks-and-mortar shops, stores or shops with online presence need payment to effected before completing a sale. E-payment instruments can be grouped into these distinct categories: electronic cards, mediating payment systems and electronic checks.

To begin with, plastic cards like credit cards, prepaid cards, debit cards facilitates purchase of goods and service by cardholders without necessarily carrying cash. Credit card remains very popular and preferred card used by consumers especially Europe, America etc (Huang 2017; Kaynak et al. 1995). On the other hand, it is envisaged that 2017 will witness other form of payments which will ultimately be the preferred choice of e-retail settlements. Moreover, mediated payment platforms such as e-wallets, mobile money - a household name that refers mobile payment in Ghana offer an alternative for customers to pay for goods and services on the e-market place. Paypal is a typical example of mediating payment service which assists e-shoppers to pay for services online. With this, prospective consumers have to register with a service provider providing their bank account details as means of payment (UNCTAD, 2015). Moreover, electronic checks also facilitate online payment where a party at a remote environment can effect payment of goods and services by means of electronic communication channels. Electronic checks exudes strong security features such as digital signatures, encryption algorithm, authentication etc as compared to traditional checks.

Conceptual Framework

![Figure 1.2: Research Model](http://onlinejournal.org.uk/index.php/AJEMS)

Related Works

Trust as a determinant of e-payment readiness

Network communication channels facilitate electronic payments (Hogan et al. 2017). These channels must be trusted. Trust has long been regarded as a catalyst for buyer-seller transactions that can provide consumers with high expectations of satisfying exchange relationships. Over the years, many studies have been carried out in the social science setting such as anthropology, marketing, economics and lately electronic commerce. Mayer et al. (1995) put forward an all encompassing definition of trust as “the willingness of a party [trustor] to be susceptible to the actions of another party [trustee] based on the anticipation that the other [trustee] will perform a particular action important to the trustor, irrespective of the ability to monitor or control that other party [trustee]”. In a trust model, it is assumed that the parties involved will act and reciprocate each other benevolence; parties held in trust cannot control or force the trusted party to fulfill the expectation; and there is a certain level of dependency between a trustor and a trustee (Pavlidis et al. 2014). These studies underscored the importance of trust as the main ingredient for understanding human behavioural exchanges (Lai et al. 2014). Nonetheless, these studies fell short of proposing an acceptable definition for trust due to its complexity.

According to (Zhuang 2014), many customers have turned away from buying on e-market place due to the level of distrust. There is a high level of uncertainty in the electronic commerce market place since partners involved are faceless. A study conducted by (Lee et al. 2011; Ling et al. 2010) practically underscored that a positive effect of trust influences consumer purchase intentions. Consequently, the role of trust is of basic importance to adequately capture consumers’ behavior in e-payment. Trust and perceived risk seems intertwined as it is also likely to influence consumer’s predisposition to adopt e-payment (Bonaiuti 2016; Cho et al. 2014). Trust and familiarity influence e-commerce which can ultimately affect e-payment as highlighted in the work of (Gefen 2000). In the study
of trading books online, Gefen (2000) deduced that trust and familiarity affects customers’ intention to buy on the internet. Thus, the study predicted that e-commerce and e-payment could be improved in a multi-faceted environment where customer’s behavioral intentions are highly influenced by trust and familiarity.

A number of studies have emphasized on trust as an important factor to accept e-payment. Customers feel discomfort or wary of engaging in any form of transactions in open network. They have a general perception that digital or electronic payment is bereft of theft, fraud and blatant invasion of privacy. (Johnson et al. 2005)Johnson and Grayson (2005) have argued that there are basically two dimensions to trust - cognitive and affective. The cognitive aspect emphasizes on logical situations which influences someone to trust something. This is borne out of the confidence customers’ repose in a service provider based mainly on competence and reliability. On the other hand, affective aspect of trust thrives on ones level of confidence towards the other. Affective trust exists on the basis of feelings (Johnson et al. 2005). The internet facilitates e-payment (Özkan et al. 2010). However, Zucker holds a contrary view pertaining to the types of trust. Zucker posited that three types trust exist in business relations – characteristic-based, process-based and institution-based as cited by (Liao 2008). Characteristic-based trust thrives on an individual’s cultural values such as appearance, lifestyle etc. It is assume there is no initial relationship between the service provider and the customer. Process-based trust is based on successful transactions in the past, which assumes an ongoing relationship. Institution-based trust considers independent intermediaries such as credit card companies, certifying bodies, and regulators etc. Akin to initial research carried out by buyer’s (McKnight et al. 2000), institution-based trust in a community of sellers is defined as a perception that appropriate conditions are in place to facilitate a successful transaction. Abbas et al. (2003) surmised in their work that, customers’ exhibiting low level predisposition to use the Internet and e-payment systems is due to the low level of trust in the internet itself as a channel that facilitates e-payment as insecure. Refusal of customers to accept any form of electronic cash can be attributed to a number of issues that bothers on security, complexity of use and speed. Additionally, Özkan et al. (2010) identified six most crucial factors with regards to the execution of e-payment channels and their customer adoption: security, trust, perceived advantage, web assurance seals, perceived risk and usability. Özkan et al. (2010) argued that security, web assurance seals, and perceived advantage are the critical factors that can serve as a catalyst for customers’ adoption of any e-payment system. In another study, Halaweh et al. (2008) highlighted some impediments that negatively impact customer adoption of electronic payment systems including: cost, insecurity and difficulty of use. Velmuran (2008) buttressed these assertions when they also identified cost of use, complexity of payment procedures, traders’ lack of providing this technology in dealings with customers, insecurity, and lack of trust as some key obstacles hindering the use of mobile phones as a means of payment. Further, Ming-Yen Teoh et al. (2013) work supports the argument that customers’ perceived security and perceived trustworthiness significantly affected customers' perceptions of mobile payment solutions. Stakeholders in the electronic commerce space have acknowledged that the success of e-commerce transactions largely depends on very robust, secured and trusted e-payment platforms (Vatalarо et al. 2016).

A study conducted by Rouibah et al. (2016) pointed out the relationship between customer perceived security and e-commerce trust transactions. The result emanated from their study purported a minimal effect of financial trust on customers’ trust in electronic commerce with a sample size of 179 customers. Tan et al. (2001) pioneered a more standardized trust model for electronic commerce where a party can initiate a transaction with a strong conviction that an individual rates trust higher than his or her personal trust. This can only be achieved based on the parties engaged in the transaction. The focus of their study was premised on cross border trading and electronic payment. In their quest to examine the effect of trust with respect to customer acceptance of internet banking, Suh et al. (2002) sampled 845 dataset on the internet to predict users’ behavioural intentions towards Internet banking services. They concluded that trust was a very critical factor that explains users’ attitude towards using Internet banking.

Technology Readiness Index

Technology readiness index is one the many theories that has been used extensively to test and validate users adoption and acceptance of technology. TRI was proposed by Parasuraman (2000) as a framework that recounts user’s general technology acceptance. Technology readiness refers to “people’s propensity to embrace and use new technologies in order to accomplish goals in their home life and at work” (Parasuraman 2000). TR gesticulate an individual’s predisposition to use a new kind of technology that
emanates from the person’s state of mind. An individual’s state of mind can serve as a driver or inhibitor to technology acceptance (Lin et al. 2011). TRI integrates user’s feelings of innovativeness, optimism, discomfort, and insecurity towards technology to determine a person’s level of readiness toward the use of technology. Preceding research works have pointed out that disposition of user’s is a critical factor in any technological innovation implementation across a wide range of fields. In the extant literature, most of these studies have explored the influence of user traits such as psychographic profiles; demographic factors etc on technology acceptance models Pramatari et al. (2009). This unusual disparities emanating from individuals personality trait is vital since such differences invariably affect user’s attitude and behavioral intentions. On the contrary, a handful of researchers have paid attention to the pervasive adverse effect of attitude and behavioural intentions. Parasuraman identified four constructs (optimism, innovativeness, discomfort and insecurity) according to the Technology Readiness model. These constructs are outlined as follows:

Optimism: A positive view of technology and a belief that [technology] offers people increased control, flexibility, and efficiency in their lives (Parasuraman 2000). Individuals’ who are hooked up with new technologies have a sense of convenience, flexibility and control. They envisage that new technology offers users more freedom and mobility. In view of this, we hypothesize that:

H1: High personal optimism about technology in general leads to high trust of an e-payment technology.

Innovativeness: innovativeness positively drives people’s attitudes and thoughts in technology adoption. The sophistication of today’s technology that comes with so many functionalities infused in them propels individuals’ to adopt a new technology. Hence we hypothesize that:

H2: High personal innovativeness about technology in general leads to higher trust of an e-payment technology.

Discomfort: A perceived lack of control over technology and a feeling of being overwhelmed by it. Often times, people feel so reluctant to use a new kind of technology but later become late adopters. Their unwillingness to adopt at first instance is premised on the notion that; technology systems are not designed for them. On the other hand, when people have a sense of inferiority complex within, they feel not fit and think of themselves as ordinary to use a new technology. Hence we hypothesize that:

H3: Low personal discomfort about technology in general leads to lower trust of an e-payment technology.

Insecurity: users’ sense of distrust of technology and skepticism about its ability to work properly is a great disincentive to adopt and use. In as much as insecurity and discomfort seems related, there is a different dimension to insecurity which constitutes some aspects of technology based transactions vis-à-vis a general lack of comfort with respect to technology. For instance, there is a general spectacle of uncertainty if information passed over the Internet got to the intended party. We hypothesize that:

H4: Low personal insecurity about technology in general leads to lower trust of an e-payment technology.

METHODS AND TOOLS

The data for the study was collected through a survey questionnaire between March (when) and August, 2017. The respondents were grouped into five categories, illiterates, basic education, high school education, university education, others. This was necessary to determine the effect of level of education on e-payment adoption. Each of these categories of respondents constituted nearly 15% the total respondents. The respondents were selected from all over Ghana to avoid selection bias. Thus respondents were selected from all the 10 regions of Ghana where 10% each of the respondents were largely selected since e-payment systems are available in almost every part of Ghana especially the mobile payment system. The questionnaire was designed to fully engage the respondents to provide as much information as possible on the constructs. Research assistants were engaged to help in the data collection. They were adequately trained for that purpose. To explain the questionnaire and its context, the participants were offered a detailed background of the study either through an introductory letter or meeting. Relevant areas or topics that needed to be responded were covered. Participants were given adequate time to prepare themselves as well as to express interest in taking part in the exercise. Follow ups were made to identify participants who were willing to take part in the exercise. In the administration of the survey questionnaires, the research assistants ensured that participants submitted questionnaires that were completely answered and did not allow room for incomplete questionnaires. A total of 1232 of completed
questionnaires with valid responses for the survey were received. The completed questionnaires were thoroughly checked for response bias. In the analysis of data, SEM techniques were employed.

RESULTS AND DISCUSSION
An EFA using Maximum Likelihood with Promax rotation was used to see if the observed variables loaded together as expected, were adequately correlated, and met criteria of reliability and validity. We address each of these below for the final six-factor model depicted in the pattern matrix in table 1 below:

Table 1: Factor Loadings

<table>
<thead>
<tr>
<th>Construct</th>
<th>Factor 1</th>
<th>Factor 2</th>
<th>Factor 3</th>
<th>Factor 4</th>
<th>Factor 5</th>
<th>Factor 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimism</td>
<td>0.707</td>
<td>0.673</td>
<td>0.651</td>
<td>0.610</td>
<td>0.607</td>
<td></td>
</tr>
<tr>
<td>Innovativeness</td>
<td>0.881</td>
<td>0.873</td>
<td>0.867</td>
<td>0.913</td>
<td>0.860</td>
<td></td>
</tr>
<tr>
<td>Trust</td>
<td>0.845</td>
<td>0.845</td>
<td>0.845</td>
<td>0.845</td>
<td>0.845</td>
<td></td>
</tr>
<tr>
<td>Insecurity</td>
<td>0.749</td>
<td>0.733</td>
<td>0.652</td>
<td>0.653</td>
<td>0.653</td>
<td></td>
</tr>
<tr>
<td>Discomfort</td>
<td>0.767</td>
<td>0.787</td>
<td>0.673</td>
<td>0.659</td>
<td>0.655</td>
<td></td>
</tr>
<tr>
<td>E-Payment Adoption</td>
<td>0.666</td>
<td>0.702</td>
<td>0.673</td>
<td>0.697</td>
<td>0.782</td>
<td>0.695</td>
</tr>
</tbody>
</table>

Following, the KMO and Bartlett’s test for sampling adequacy was significant and the communalities for each variable were sufficiently high (all above 0.300 and most above 0.600), thus indicating the chosen variables were adequately correlated for a factor analysis. Additionally, the reproduced matrix had only 2% non-redundant residuals greater than 0.05, further confirming the adequacy of the variables and 6-factor model. The Cronbach’s alphas for the extracted factors are shown below, along with their labels and specification. All alphas were above 0.70. The factors are all reflective because their indicators are highly correlated and are largely interchangeable(Jarvis et al. 2003) as shown in table 2.

Table 2: Construct Reliability Measures

<table>
<thead>
<tr>
<th>Construct</th>
<th>CR</th>
<th>AVE</th>
<th>MSV</th>
<th>CR</th>
<th>AVE</th>
<th>MSV</th>
<th>CR</th>
<th>AVE</th>
<th>MSV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimism</td>
<td>0.800</td>
<td>0.506</td>
<td>0.003</td>
<td>0.044</td>
<td>0.718</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Innovativeness</td>
<td>0.800</td>
<td>0.506</td>
<td>0.003</td>
<td>0.044</td>
<td>0.718</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trust</td>
<td>0.910</td>
<td>0.717</td>
<td>0.174</td>
<td>0.041</td>
<td>0.417</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insecurity</td>
<td>0.876</td>
<td>0.684</td>
<td>0.174</td>
<td>0.041</td>
<td>0.417</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discomfort</td>
<td>0.824</td>
<td>0.485</td>
<td>0.187</td>
<td>0.023</td>
<td>0.432</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-Payment Adoption</td>
<td>0.756</td>
<td>0.516</td>
<td>0.503</td>
<td>0.001</td>
<td>0.796</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Validity
The factors demonstrate sufficient convergent validity, as their loadings were all above the recommended minimum threshold of 0.350 for a samples size of 300(Hair et al. 2011). The factors also demonstrate sufficient discriminant validity, as the correlation matrix shows no correlations above 0.700, and there are no problematic cross-loadings. This six-factor model had a total variance explained of 60%, with all extracted factors having eigenvalues above 1.0 except one, which was close at 0.989. Modification indices were consulted to determine if there was opportunity to improve the model. Table 3 indicates that the goodness of fit for our measurement model is sufficient.

Table 3: Goodness of fit indexes

<table>
<thead>
<tr>
<th>Measure</th>
<th>Estimate</th>
<th>Threshold</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMIN</td>
<td>466.19</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>DF</td>
<td>309</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>CMIN/DF</td>
<td>1.509</td>
<td>Between 1 and 3</td>
<td>Excellent</td>
</tr>
<tr>
<td>CFI</td>
<td>>0.95</td>
<td>>0.95</td>
<td>>0.95</td>
</tr>
<tr>
<td>SRMR</td>
<td><0.08</td>
<td><0.08</td>
<td><0.08</td>
</tr>
<tr>
<td>RMSEA</td>
<td><0.06</td>
<td><0.06</td>
<td><0.06</td>
</tr>
<tr>
<td>PClose</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

Hu et al. (1999)*Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria versus New Alternatives

<table>
<thead>
<tr>
<th>Measure</th>
<th>Terrible</th>
<th>Acceptable</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMIN/DF</td>
<td>> 5</td>
<td>> 3</td>
<td>> 1</td>
</tr>
<tr>
<td>CFI</td>
<td><0.90</td>
<td><0.95</td>
<td>>0.95</td>
</tr>
<tr>
<td>SRMR</td>
<td>>0.10</td>
<td>>0.08</td>
<td><0.08</td>
</tr>
<tr>
<td>RMSEA</td>
<td>>0.08</td>
<td>>0.06</td>
<td><0.06</td>
</tr>
<tr>
<td>PClose</td>
<td><0.01</td>
<td><0.05</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

Composite reliability of all concepts exceeds the .70 benchmark for all constructs. So, high levels of internal consistency reliability have been demonstrated among all six reflective latent variables. As a result, the lower indicator reliability of CR can be accepted. Convergent validity is acceptable as
almost all factor loadings exceed the 0.60 benchmark. For all factors, the AVE was above 0.50 except for authority, which was close at 0.485. However, as this factor is minimally correlated with the other factors in the model, and because the reliability score (0.823) was greater than 0.700, we felt this was admissible (i.e., while it is not especially strong internally, it is, at least, a reliable and distinct construct within our model). Fornell et al. (1981) suggest that the square root of AVE in each latent variable can be used to establish discriminant validity, if this value is larger than other correlation values among the latent variables. The square roots of average variances extracted (AVEs) are shown on diagonal, in bold in the Table 4. The table indicates that discriminant validity is well established.

Table 4: Standardized Regression Loads

<table>
<thead>
<tr>
<th>Issue</th>
<th>J</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>345</td>
<td>7</td>
</tr>
</tbody>
</table>

The final model supports the hypotheses at 5% significant level. The prediction that High personal optimism about technology in general leads to high trust of an e-payment technology (H1) was supported with (p = 0.012 < 0.05). Hypothesis 2 predicted that High personal innovativeness about technology in general leads to higher trust of an e-payment technology was also supported with (p = 0.023 < 0.05). While H3 predicted that low personal discomfort about technology in general leads to lower trust of an e-payment technology was supported with (p = 0.021 < 0.05). The prediction of H4 that, low personal insecurity about technology in general leads to lower trust of an e-payment technology was supported with (p = 0.021 < 0.05). The prediction of H5 that high trust of in e-payment technology leads to its adoption was also supported with (p = 0.024 < 0.05).

Conclusions, Limitation and Future Research

As indicated in earlier section of the study, transitioning from a cash-based economy to digital or cashless economy requires that business entities build a more friendly customer relationship strategy while ensuring their security. This study sought to integrate trust and the Technology Readiness Index (TRI) by Parasuraman (2000) to determine their respective influence on e-payment adoption. The finds sheds light into potential factors influencing e-payment adoption and for that matter measures to overcome these challenges. Without doubt lack of trust appears to pose serious challenges to e-payment adoption and vice versa. The results of this paper suggest that in an environment of high personal optimism about technology in general there is the higher likelihood of high trust of an e-payment technology. This results is consistent with the findings of Poppo et al. (2002). Similarly, high personal innovativeness about technology in general leads to higher trust of an e-payment technology. This notion is also consistent with earlier work of Parasuraman et al (2012). In their study, they found that increasing appreciation for innovativeness leads to a diminished decline in e-commerce adoption. This is as valid as the observation that low personal discomfort about technology in general leads to lower trust of an e-payment technology. Again the observation by Gefen (2000) that trust and familiarity influence e-commerce which can ultimately affect e-payment as highlighted is important. In the study of trading books online, Gefen (2000) deduced that trust and familiarity affects customers’ intention to buy on the internet. Thus, the study predicted that e-commerce and e-payment could be improved in a multi-faceted environment where customer’s behavioral intentions are highly influenced by trust and familiarity. Finally the idea that low personal insecurity about technology in general leads to lower trust of an e-payment technology is also established by the findings of this research. It is valid to state that users’ sense of distrust of technology and skepticism about its ability to work properly is a great disincentive to adopt and use. In as much as insecurity and discomfort seems related, there is a different dimension to insecurity which constitutes some aspects of technology based transactions vis-à-vis a general lack of comfort with respect to technology.

List of References

